Астрономы напрасно приняли пару из белого карлика и черной дыры за самый близкий остаток взрыва сверхновой. Дыры нет, но пара в будущем может стать самой близкой к Земле сверхновой.
Астрономы любят, когда в космосе что-нибудь мощно «бабахнет». Не из ребячества или безответственности, конечно, а потому, что на космических масштабах и взрывы космические, с выделением огромного количества энергии. И видно эти взрывы с очень и очень далеких расстояний – оттуда, куда пока с большим трудом дотягивается взгляд даже самых больших телескопов.
Самые мощные космические взрывы – это явления сверхновых, знаменующие окончание жизни звезд, а также гамма-всплески, которые, вероятно, связаны с рождением черных дыр. Однако гамма-всплески пока не очень поняты, а потому астрономы концентрируют свое внимание на сверхновых, точнее – сверхновых спектрального типа Ia, вспышки которых видно даже с самого края наблюдаемой Вселенной.
Сверхновые типа Ia обладают не только самой высокой яркостью, но и поразительным однообразием – абсолютное большинство из них имеет одну и ту же истинную светимость в пределах пары десятков процентов. Поэтому их можно использовать в качестве так называемых стандартных свечей для измерения расстояний: если мы знаем истинный блеск светила и знаем его наблюдаемую яркость, несложно выяснить, как далеко оно находится. Именно так, по сверхновым типа Ia, ученые в самом конце XX века выяснили, что Вселенная расширяется с ускорением; открытие «темной энергии» – так называют причину этого ускорения – стало, наверное, самым главным открытием последних десятилетий.
Обмен и столкновенияРазобраться, почему все сверхновые типа Ia имеют одну и ту же светимость, удалось гораздо раньше. Астрономы полагают, что эти вспышки – результат термоядерного взрыва белого карлика, погибшей звезды массой с Солнце и размером с Землю, в ядре которой прекратились ядерные реакции. От неминуемого коллапса под тяжестью собственного веса белые карлики удерживает лишь давление вырожденного газа электронов, которые нельзя втиснуть в маленький объем, не увеличив одновременно его давление.
Откуда ж взяться тому веществу, что может переполнить чандрасекаровский предел? Вариантов всего два – медленное, в течение миллионов и миллиардов лет перетекание газа с звезды -- соседки белого карлика или слияние двух таких звездных трупов, которые по отдельности не превосходят своих пределов Чандрасекара, но в сумме переваливают за эту границу.
Судя по всему, в природе реализуются оба процесса, и каков вклад каждого из них, пока неясно. На прошлой неделе в Nature была опубликована статья Марата Гильфанова из Института космических исследований РАН и его коллег по Институту астрономии германского Общества имени Макса Планка, которым удалось показать, что (по крайней мере в галактиках одного из типов) перетекание отвечает максимум за 5% сверхновых. Остальное, вероятно, происходит от слияния двух белых карликов.
Очень быстрый хоровод
Между тем до сих пор нет надежных свидетельств, что такие двойные, способные слиться за время существования Вселенной, есть вообще. В принципе это не большая проблема: чтобы сверхновые типа Ia взрывались так часто, как это наблюдается, достаточно, чтобы всего один из тысячи карликов обладал нужным напарником, а надежно проверены на двойственность как раз порядка тысячи таких звезд. И тем не менее поиски кандидатов ведутся.
Один такой карлик вскоре удалось найти – им оказалась неприметная звездочка в созвездии Большой Медведицы, прямо под ручкой ее «ковша», которую астрономы обозначают SDSS1257+5428. Ее спектр показывал, что этот объект приближается к нам с огромной скоростью в 300 км/c, что, мягко говоря, подозрительно. Расстояние до него астрономы оценили примерно в 150-300 световых лет.
Дыра на месте карлика…
Последующие наблюдения показали, что подозрения не напрасны: скорость карлика меняется от 300 км/c к нам до 300 км/c от нас и обратно каждые 4 часа и 34 минуты. Судя по всему, с таким периодом карлик и его напарник крутятся друг вокруг друга. Если выложить спектры, полученные телескопами в разные моменты времени, по фазе этого периода, линии в них выписывают симпатичные синусоиды – к красному концу спектра, когда белый карлик идет от нас, и к фиолетовому – когда он приближается к нам.
Правда, при анализе оказалось, что этот объект – все-таки не то, что искали Эйзенштейн и его коллеги. Моделирование линий во всей их сложности оказалось неожиданно проблематичным, однако привело ученых к выводу, что они смотрят на массивный белый карлик, который лишь немного не дотягивает до чандрасекаровского предела. Однако сливаться ему было по большому счету не с чем: линий спутника на спектре не обнаружилось вовсе, а масса этого объекта должна была составить полторы-две массы Солнца. Все это навело ученых на мысль, что спутник – это черная дыра или нейтронная звезда.
Нельзя сказать, что астрономы расстроились. Черные дыры и нейтронные звезды – еще более экзотические объекты, чем белые карлики. Они образуются при взрывах массивных звезд (сверхновые всех остальных типов, помимо Ia). Находка задала невероятно много вопросов – например, как такая тесная двойная сохранилась после грандиозного взрыва или откуда в ней вообще взялся белый карлик, да еще на такой тесной орбите. Кроме того, SDSS1257+5428 мгновенно стал самым близким остатком взрыва сверхновой, известным астрономам. А поскольку расположен он сравнительно недалеко, в сотне-другой световых лет, таких объектов по всей Галактике должно быть полным-полно, а значит, и вспышки сверхновых в ней в прошлом должны были быть куда более частыми событиями, чем в наши дни.
…и вновь на месте карлик
На этой неделе в этой истории возник новый неожиданный поворот. Как показали астрономы из Великобритании и Германии под руководством Томаса Марша из Университета Уорика, SDSS1257+5428 – все-таки двойная звезда, обе компоненты которой являются белыми карликами. Только система эта очень необычна, и в спектре мы видим линии вовсе не главного ее компаньона.
Ученые получили очень точные наблюдения объекта на телескопе имени Уильяма Гершеля на канарском острове Ла-Пальма и, как и их предшественники, выложили спектры в рядок, по фазе орбитального периода. Спектральные линии, которые на каждом отдельном спектре превратились в точки определенной яркости, означающей яркость объекта на соответствующей длине волны, как и положено, выстроились в тонкие, ровные, параллельные друг другу синусоиды.
А дальше Марш и его коллеги сделали главный трюк – они вычли модель профиля линии из полученных данных и посмотрели, что на ней останется. На финальной картинке красовались ровно такие же синусоиды, только в противофазе. Как пишут астрономы в статье, подготовленной для Astrophysical Journal Letters, интерпретация очевидна – это линии второго компонента системы. Поскольку крутятся они друг вокруг друга, то когда первый компонент идет к нам, и его линии смещаются в фиолетовую сторону, второй движется от нас, и его линии смещаются к красному концу спектра. Правда, заметить их до сих пор было практически невозможно – эти линии гораздо шире и гораздо слабее, так что терялись на фоне ярких, уверенных линий первого белого карлика, пока их не вычли из спектра.
Из неясного в неоднозначное
Как полагают Марш и его коллеги, в этом быстром вращении – секрет происхождения очень необычной системы. Весьма вероятно, что в течение долгого времени вещество с «первичной» звезды перетекало на «вторичный» карлик, принося с собой массу и момент вращения. За десятки, а, может, и сотни миллионов лет карлик стал массивным и начал быстро вращаться. Тем временем и для «первичной» звезды подошел положенный по законам звездной эволюции срок, и она сама, изрядно похудевшая, превратилась в белый карлик, сбросив оболочку. Правда, у этой модели прошлого есть трудности – теория предсказывает, что столь плотные пары должны проходить стадию с общей оболочкой, а она длится совсем недолго и не может так сильно раскрутить карлик. Впрочем, теперь, после обнаружения объекта SDSS1257+5428, такое расхождение, скорее, стало проблемой самой теории.
Что же касается будущего, то здесь все более или менее понятно. Сейчас карлики постепенно теряют энергию на излучение гравитационных волн и медленно приближаются друг к другу. Так будет продолжаться еще 3 миллиарда лет, пока период системы не снизится с нынешних четырех с половиной часов до полутора минут и карлики будут почти касаться друг друга.
А вот дальше, признают авторы работы, в рамках имеющейся неопределенности параметров возможны почти все варианты. Может случиться то самое катастрофическое слияние и взрыв сверхновой Ia – так что SDSS1257+5428 все-таки окажется объектом того типа, который ученые хотели найти, затевая весь проект. Может, начнется более спокойное перетекание вещества, и система, хотя и перейдет предел, обойдется без взрыва, сколлапсировав в быстро вращающуюся нейтронную звезду.
Однако перетекание вещества может оказаться еще более мягким, поскольку течь легкий (и значит, более крупный) карлик начнет рано, а делать это будет медленно. В этом случае не исключен вариант, при котором произойдет «отскок» и перетекание остановится, а компоненты вновь разойдутся на более широкую орбиту. На ней поменявшиеся массой карлики снова будут излучать гравитационные волны и снова станут медленно приближаться друг к другу. Если эволюция пойдет по этому сценарию, который авторам представляется наиболее правдоподобным, у истории SDSS1257+5428 может появиться еще не одно продолжение.