Космические наблюдения помогли разрешить двухвековую загадку звезды эпсилон Возничего, очередное затмение которой началось в августе. Вместо сверхгиганта она оказалась распухшим перед смертью карликом. Правда, совершенно неясно, почему звезда-долгожитель состарилась прежде, чем ее короткоживущий напарник.
В августе прошлого года началось затмение яркой северной звезды ε (эпсилон) Возничего (ε Aurigae, ε Aur). С последнего месяца лета ее блеск принялся потихоньку падать и к концу 2009 года достиг минимума. На этом уровне – примерно вполовину от своей нормальной яркости – звезда проведет еще более года, и лишь весной 2011-го начнет подниматься к обычному значению.
Звезда-загадка
Такое будущее предсказывают не астрологи, а настоящие астрономы, но даже они до конца не уверены в своих прогнозах. Затмения ε Возничего случаются каждые 27 с небольшим лет, то есть примерно один раз в поколение. И сейчас на Земле живет уже восьмое поколение специалистов по звездам, которые не могут объяснить, что же происходит в двух тысячах световых лет от Земли. Почти двести лет ученые не могут понять, почему ε Возничего так долго вползает в тень, отчего она вдруг становится ярче в самой середине затмения, а самое главное – что, собственно, затмевает звезду, и как такому огромному объекту удается оставаться совершенно невидимым.
Крупнее крупного
ε Возничего относится к классу затменно-переменных двойных звезд, в которых одна из компонент регулярно проходит перед второй, частично закрывая ее поверхность от земного наблюдателя; из-за этого блеск системы падает. Судя по спектру, яркий компонент ε Возничего (его обозначают как ε Aur A) -- звезда спектрального класса F – желтая звезда, чуть более горячая, чем Солнце. При этом она в десятки тысяч раз ярче, а значит, в сотни раз крупнее нашего светила; такие звезды называют «сверхгигантами». Чтобы закрыть половину ее света, нужен не менее крупный объект.
Долгое время астрономы полагали, что объект этот (ε Aur B) -- умирающая звезда, электроны в ионизованных внешних слоях которой как раз и перераспределяют свет яркой компоненты. В результате те лучи, которые должны были идти к нам, рассеиваются на все четыре стороны, и наблюдаемый блеск звезды падает. Размер этого умирающего исполина должен был составлять миллиарды километров, так что в старых популярных книжках по астрономии ε Aur B даже официально называли «самой крупной» звездой, известной астрономам.
Тем не менее такая модель столкнулась с трудностями при объяснении спектрального состава и поляризации света, который исходит из системы. Сейчас астрономы полагают, что на деле темным «экраном», который не пропускает около половины света ε Aur A, может служить диск газа и пыли, которые крутятся вокруг какого-то массивного центра. Если в центре данного диска есть «дырка», то она вполне позволяет объяснить и загадочное усиление яркости ε Возничего незадолго до середины затмения.
Двойной хоровод
Однако и у этой модели есть проблемы. Самая главная из них – природа того самого массивного центра. Сверхгиганты спектрального класса F имеют массу в 15-20 раз больше, чем у Солнца, и, судя по кривой блеска, примерно такой массой должен обладать и массивный объект с окружающим его газо-пылевым диском. Если этот объект – черная дыра, то вещество из газо-пылевого диска, падая на звезду, должно сильно разогреваться и ярко светиться в рентгеновском диапазоне. Тем не менее, судя по данным космических рентгеновских обсерваторий, ε Возничего никак нельзя назвать заметным источником рентгеновских лучей.
Если же центральный объект – обычная звезда, то при массе в 10-20 масс Солнца она должна ярко светиться в оптике, а это свечение мы тем более должны были бы давно заметить.
Чтобы решить проблему уникальной затменной двойной, ученые предположили, что и сам ε Aur B – двойная система из двух звезд спектрального класса B, которые водят хоровод в самом центре темного диска. Светимость обычной звезды с массой сильно увеличивается. Так что две звезды с массой по 5-10 масс Солнца светятся в сумме в десяток раз меньше, чем одна звезда с массой в 10-20 солнц.
Ко всему прочему, хоровод из двух звезд должен, как пропеллер, разметать вещество диска, создавая в его центре дырку, через которую при случае может просвечивать и яркий компонент ε Возничего -- ε Aur A. Это решает проблему скачка яркости в середине затмения, так что модель двойной внутри газо-пылевого диска последнее время стала самой популярной версией природы этой уникальной системы.
На пределе возможностей
Хоард и его коллеги тщательно измерили спектр ε Возничего в длинноволновом диапазоне электромагнитного излучения с помощью инфракрасного космического телескопа имени Лаймана Спитцера. Сделать это было не так просто: ε Aurigae – слишком яркая звезда для этого инструмента, добившегося наибольших успехов в изучении далеких галактик и зарождающихся звезд.
Чтобы Spitzer не ослеп, Хоарду пришлось направить свет исследуемой звезды точно на угол четырех пикселей светочувствительной камеры, тем самым четырехкратно «размазав» яркость ε Aur. Кроме того, ученые вынуждены были использовать экспозиции с совершенно «земной» длительностью в 1/100 секунды – это предел возможностей затвора Spitzer`а, который может часами копить свет от одного и того же объекта.
Коррекция вниз
Подгоняя модель ε Возничего к наблюдениям, Хоарду и его коллегам никак не удавалось получить приемлемое соответствие с полученными данными, пока кому-то из них не пришла в голову простая мысль. Что если ε Aur A – не молодая и массивная звезда, а, напротив, сравнительно небольшой объект в самом конце своей эволюции, перед окончательным сбросом оболочки в виде планетарной туманности?
В этом случае ε Aur A может быть всего вдвое тяжелее Солнца, а огромную светимость ей придают именно непомерно раздувшиеся перед сбросом внешние слои. При этом и второй компонент ε Aur B может быть единственной звездой, которая лишь в 5-6 раз тяжелее Солнца, но не раздувшейся, а потому незаметной на фоне ε Aur A. Да и размеры темного газо-пылевого диска, окружающего ε Aur B, должны быть меньше в несколько раз – если звезды легче, то движутся они медленнее, а, значит, все размеры, которые оценивались по наблюдаемой продолжительности затмения, нужно сократить.
Подсчитав спектр такой системы – гибнущая звезда класса F плюс звезда класса B в центре газо-пылевого диска, Хоард и его коллеги легко добились идеального соответствия с наблюдательными данными.
«Больше всего нам понравилось, что наблюдения так четко указывают на невысокую массу ε Aur A, – признался лидер научного коллектива. – В ближайшие тысячелетия она должна превратиться в планетарную туманность».
Неясное прошлое
Впрочем, не стоит думать, что загадка ε Возничего решена. Если новая модель и способна объяснить нынешнее состояние системы, то она ничего не говорит о ее поведении от затмения к затмению. Почему, к примеру, продолжительность полной фазы затмения последние два века увеличивается, а частных фаз – падает? Конечно, можно предположить, что размер ε Aur A растет, а диска – снижается, но, что могло бы стать причиной таких перемен, не ясно.
Кроме того, вещество диска, с помощью которого Хоарду и его коллегам удалось добиться наилучшего согласия с наблюдениями, должно состоять из относительно крупных песчинок, а не мельчайшей пыли, характерной для дисков вокруг горячих звезд. Да и диски обычно наблюдаются вокруг молодых звезд, которым всего несколько миллионов лет, в то время как звезды вдвое тяжелее Солнца должны жить сотни миллионов лет, прежде чем начать превращение в планетарную туманность.
Возможно, в решении этой загадки и кроется ответ на вопрос об эволюционном происхождении системы. Не исключено, что в процессе эволюции двойной ее компоненты подходили друг к другу гораздо ближе и могли обменяться массой, а газо-пылевой диск – лишь напоминание о перетекании вещества в системе. Разобраться в этом помогут лишь дополнительные наблюдения. В том числе и любительские – отыскать ε Возничего высоко в небе в ясную зимнюю ночь не составляет никакой проблемы.